Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
U
UQ of Energy-based Vibro-Localization-Technique
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Package Registry
Operate
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Murat Ambarkutuk
UQ of Energy-based Vibro-Localization-Technique
Commits
e8c92c71
Commit
e8c92c71
authored
1 year ago
by
Murat Ambarkutuk
Browse files
Options
Downloads
Patches
Plain Diff
lets talk about sammich scripts
parent
a2920820
Branches
Branches containing commit
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
code/sammich_katsidimas.m
+19
-0
19 additions, 0 deletions
code/sammich_katsidimas.m
code/sammich_multi.m
+106
-0
106 additions, 0 deletions
code/sammich_multi.m
code/sammich_single.m
+72
-78
72 additions, 78 deletions
code/sammich_single.m
with
197 additions
and
78 deletions
code/sammich_katsidimas.m
0 → 100644
+
19
−
0
View file @
e8c92c71
clc
;
close
all
;
clear
all
;
prepare_generic
;
experiment
=
load
(
'data/katsidimas_etal_organized.mat'
);
d_true
=
pdist2
(
experiment
.
gt
,
experiment
.
sensor_locations
);
% nx = 30; ny = 30;
% space = generate_space(0, 0, 30, 30, nx, ny);
% xy = [space.xx(:), space.yy(:)];
z
=
experiment
.
z
;
size
(
z
)
z
=
z
-
mean
(
z
,
3
);
e
=
energy
(
z
,
3
);
% figure(1);
% for i=[1,3]
% ax(i) = subplot(2,2,i);
% scatter(d_true(:, i), e(:, i));
% end
% linkaxes(ax, 'xy');
scatter
(
d_true
(:,
[
1
,
3
]),
e
(:,
[
1
,
3
]))
This diff is collapsed.
Click to expand it.
code/sammich_multi.m
0 → 100644
+
106
−
0
View file @
e8c92c71
clc
;
clearvars
;
close
all
;
prepare_generic
;
load
(
"../data/goodwin_step_data.mat"
);
experiment
=
experiment1
;
sensors
=
[
3
,
4
];
nx
=
275
;
ny
=
125
;
d_true
=
pdist2
(
experiment
.
sensor_locations
(:,
sensors
)
', experiment.groundtruth'
);
space
=
generate_space
(
13
,
35
,
27
,
33
,
nx
,
ny
);
xy
=
[
space
.
xx
(:),
space
.
yy
(:)];
%%
for
j
=
1
:
experiment
.
nsteps
e
(:,
j
)
=
experiment
.
steps
(
j
)
.
e
;
end
e
=
e
(
sensors
,
:);
ncases
=
experiment
.
nsteps
*
numel
(
sensors
);
ntraining
=
round
(
0.6
*
ncases
);
% training_idx = randsample(ncases, ntraining);
training_idx
=
round
(
linspace
(
1
,
ncases
,
ntraining
));
ee
=
e
(:);
dd
=
d_true
(:);
etraining
=
ee
(
training_idx
);
dtraining
=
dd
(
training_idx
);
[
model
,
gof
]
=
fit
(
etraining
,
dtraining
,
'power1'
,
'Robust'
,
'Bisquare'
,
'Lower'
,
[
0
,
-
inf
],
'Upper'
,
[
inf
,
0
]);
beta
=
[
model
.
a
;
model
.
b
];
ncases_testing
=
1
;
nk
=
50
;
kmax
=
3
;
k_space1
=
linspace
(
0
,
kmax
,
nk
);
k_space2
=
linspace
(
0
,
kmax
,
nk
);
[
kk1
,
kk2
]
=
meshgrid
(
k_space1
,
k_space2
);
k12
=
[
kk1
(:),
kk2
(:)];
%%
fxy
=
zeros
(
ny
,
nx
,
2
,
nk
*
nk
);
max_prob
=
zeros
(
nk
*
nk
,
1
);
step_idx
=
25
;
for
k_idx
=
1
:
length
(
k12
)
start_time
=
time
();
k
=
k12
(
k_idx
,
:);
for
sensor_idx
=
1
:
2
et
=
experiment
.
steps
(
step_idx
)
.
e
(
sensors
(
sensor_idx
));
nsamples
=
length
(
experiment
.
steps
(
step_idx
)
.
e
(
sensors
(
sensor_idx
)));
xi
=
experiment
.
sensor_locations
(:,
sensors
(
sensor_idx
))
'
;
ei
=
experiment
.
steps
(
step_idx
)
.
e
(
sensors
(
sensor_idx
));
prob
=
pdf_fx
(
xy
,
xi
,
ei
*
k
(
sensor_idx
),
nsamples
,
experiment
.
sigma_zeta
*
1500
,
beta
);
fxy
(:,
:,
sensor_idx
,
k_idx
)
=
reshape
(
prob
,
[
ny
,
nx
]);
end
joint
=
squeeze
(
prod
(
fxy
(:,
:,
:,
k_idx
),
3
));
max_prob
(
k_idx
)
=
max
(
joint
(:));
duration
=
seconds
(
time
()
-
start_time
);
if
mod
(
k_idx
,
100
)
==
0
fprintf
(
"Step ID: %d k ID: %d is completed in %.2f [secs]\n"
,
step_idx
,
k_idx
,
duration
);
end
end
max_prob_over_k_space
=
reshape
(
max_prob
,
nk
,
nk
);
figure
(
1
);
ax1
=
subplot
(
121
);
contourf
(
kk1
,
kk2
,
max_prob_over_k_space
,
300
,
"edgecolor"
,
"none"
)
shading
interp
;
axis
equal
;
hold
on
;
plot
(
k_space1
,
k_space2
,
'r-.'
);
xlabel
(
"$\kappa_1$"
);
ylabel
(
"$\kappa_2$"
)
ax2
=
subplot
(
122
);
plot
(
k_space1
,
diag
(
max_prob_over_k_space
),
'r-.'
,
"Linewidth"
,
3
);
xlabel
(
"$\kappa \approx \kappa_1 \approx \kappa_2$"
)
ylabel
(
"Maximum Probability $f(x)$"
);
grid
on
;
grid
minor
;
linkaxes
([
ax1
,
ax2
],
'x'
)
% parfor k_idx=1:nk
% start_time = time();
% margi = squeeze(sum(fxy(:, :, :, k_idx, step_idx), 3));
% joint = squeeze(prod(fxy(:, :, :, k_idx, step_idx), 3));
% % division = trapz(space.x, trapz(space.y, joint));
% % joint_pdf = joint / division;
% f = figure('visible', 'off');
% ax_1 = subplot(221);
% surf(space.xx, space.yy, margi); hold on;
% for sensor_idx = 1:experiment.nsensors
% scatter(experiment.sensor_locations(1, sensor_idx), experiment.sensor_locations(2, sensor_idx), 'rx');
% end
% % colorbar;
% scatter(experiment.groundtruth(1, step_idx), experiment1.groundtruth(2, step_idx), 'k.')
% axis equal; shading interp; view([0, 90]); drawnow;
% ax_2 = subplot(222);
% surf(space.xx, space.yy, joint); hold on;
% for sensor_idx = 1:experiment.nsensors
% scatter3(experiment.sensor_locations(1, sensor_idx), experiment.sensor_locations(2, sensor_idx), 100, 'rx');
% end
% % colorbar;
% scatter3(experiment.groundtruth(1, step_idx), experiment1.groundtruth(2, step_idx), 100, 'k.')
% axis equal; shading interp; view([0, 90]); drawnow;
% subplot(2,2, [3:4]);
% plot(k_space, [max_prob(step_idx, 1:k_idx), zeros(1, nk-k_idx)]); grid on; grid minor; xlabel('SNR $\kappa$'); ylabel('Max Joint-Probability');
% ylim([0 max(max_prob(step_idx, :))]);
% linkaxes([ax_1, ax_2], 'xy');
% fname = sprintf("../data/k_study/step_%d/result_%d.png", step_idx, k_idx);
% exportgraphics(gcf, fname, 'BackgroundColor', 'white', 'Resolution', 600);
% close(f);
% %
% duration = seconds(time()-start_time);
% fprintf("Step ID: %d k ID: %d is completed in %.2f [secs]\n", step_idx, k_idx, duration);
% end
% end
% save("../data/k_study/results.mat", "fxy", "space", "k_space", "beta");
This diff is collapsed.
Click to expand it.
code/sammich_single.m
+
72
−
78
View file @
e8c92c71
clc
;
clearvars
;
close
all
;
prepare_generic
;
load
(
"../data/goodwin_step_data.mat"
);
experiment
=
experiment1
;
nx
=
44
;
ny
=
1
6
;
nx
=
275
;
ny
=
1
25
;
d_true
=
pdist2
(
experiment
.
sensor_locations
', experiment.groundtruth'
);
space
=
generate_space
(
13
,
35
,
27
,
35
,
nx
,
ny
);
% dspace = linspace(0, 30, 100);
% theta_space = linspace(0, 2*pi, 100);
% p_theta = ones(size(theta_space))/(2*pi);
space
=
generate_space
(
13
,
31
,
27
,
33
,
nx
,
ny
);
xy
=
[
space
.
xx
(:),
space
.
yy
(:)];
%%
for
j
=
1
:
experiment
.
nsteps
...
...
@@ -20,102 +17,99 @@ ee = e(:);
dd
=
d_true
(:);
etraining
=
ee
(
training_idx
);
dtraining
=
dd
(
training_idx
);
[
model
,
gof
]
=
fit
(
etraining
,
dtraining
,
'power1'
,
'Robust'
,
'Bisquare'
,
'Lower'
,
[
0
,
-
inf
],
'Upper'
,
[
inf
,
0
]);
figure
(
666
);
hold
on
;
plot
(
linspace
(
0
,
0.8
,
10
),
model
.
a
*
linspace
(
0
,
0.8
,
10
)
.^
model
.
b
);
plot
(
etraining
,
dtraining
,
'rx'
);
grid
on
;
grid
minor
;
% exportgraphics(gcf, '../figures/propagation_curve.png', 'BackgroundColor', 'none', 'Resolution', 60);
close
(
666
);
beta
=
[
model
.
a
;
model
.
b
];
ncases_testing
=
1
;
%%
best_error
=
inf
;
best_model
=
NaN
;
iter_max
=
1000
;
n_batch
=
10
;
error_threshold
=
2
;
point_threshold
=
50
;
qq
=
linspace
(
0
,
.
6
,
100
);
for
iter
=
1
:
iter_max
confirmed_inliers
=
[];
maybe_inliers
=
sort
(
randsample
(
training_idx
,
n_batch
));
[
maybe_model
,
gof
]
=
fit
(
ee
(
maybe_inliers
),
dd
(
maybe_inliers
),
'power1'
,
'Robust'
,
'Bisquare'
,
'Lower'
,
[
0
,
-
inf
],
'Upper'
,
[
inf
,
0
]);
evals
=
feval
(
maybe_model
,
etraining
);
error
=
evals
-
dtraining
;
idx
=
find
(
error
<=
error_threshold
);
confirmed_inliers
=
[
confirmed_inliers
;
idx
];
if
length
(
confirmed_inliers
)
>
point_threshold
;
[
better_model
,
better_gof
]
=
fit
(
ee
(
confirmed_inliers
),
dd
(
confirmed_inliers
),
'power1'
,
'Robust'
,
'Bisquare'
,
'Lower'
,
[
0
,
-
inf
],
'Upper'
,
[
inf
,
0
]);
if
better_gof
.
sse
<
best_error
best_model
=
better_model
;
best_error
=
better_gof
.
sse
end
end
mean_error
=
best_error
/
ncases
;
if
mean_error
<
1
fprintf
(
"Best Error: %3.3f "
,
mean_error
);
break
;
end
end
beta
=
[
best_model
.
a
;
best_model
.
b
];
nk
=
100
;
k_space
=
linspace
(
0
,
1
,
nk
);
sensors
=
[
4
,
5
,
6
,
7
,
8
,
9
,
10
];
nsensors
=
length
(
sensors
);
% step_indices = sort(randsample(experiment.nsteps, ncases_testing));
k_space
=
linspace
(
0
,
10
,
nk
);
%%
fxy
=
zeros
(
ny
,
nx
,
experiment
.
nsensors
,
nk
,
experiment
.
nsteps
);
max_prob
=
zeros
(
experiment
.
nsteps
,
nk
);
for
step_idx
=
1
:
experiment
.
nsteps
fxy
=
zeros
(
ny
,
nx
,
nsensors
,
nk
);
max_prob
=
zeros
(
1
,
nk
);
folder_name
=
sprintf
(
"../data/k_study/step_%d"
,
step_idx
);
mkdir
(
folder_name
)
for
qq
=
1
:
length
(
k_space
)
k
=
k_space
(
qq
);
mkdir
(
folder_name
);
for
k_idx
=
1
:
nk
start_time
=
time
();
for
pp
=
1
:
nsensors
sensor_idx
=
sensors
(
pp
);
k
=
k_space
(
k_idx
);
parfor
sensor_idx
=
1
:
experiment
.
n
sensors
et
=
experiment
.
steps
(
step_idx
)
.
e
(
sensor_idx
);
nsamples
=
length
(
experiment
.
steps
(
step_idx
)
.
e
(
sensor_idx
));
for
xy_idx
=
1
:
length
(
xy
)
[
I
,
J
]
=
ind2sub
([
ny
,
nx
],
xy_idx
);
xy_interest
=
xy
(
xy_idx
,
:);
xi
=
experiment
.
sensor_locations
(:,
sensor_idx
)
'
;
ei
=
experiment
.
steps
(
step_idx
)
.
e
(
sensor_idx
);
di
=
vecnorm
(
xy_interest
-
xi
);
fxy
(
I
,
J
,
pp
,
qq
)
=
pdf_fx
(
xy_interest
,
xi
,
ei
*
k
,
nsamples
,
experiment
.
sigma_zeta
*
1500
,
beta
);
end
xi
=
experiment
.
sensor_locations
(:,
sensor_idx
)
'
;
ei
=
experiment
.
steps
(
step_idx
)
.
e
(
sensor_idx
);
prob
=
pdf_fx
(
xy
,
xi
,
ei
*
k
,
nsamples
,
experiment
.
sigma_zeta
*
1500
,
beta
);
qwert
=
reshape
(
prob
,
[
ny
,
nx
]);
division
=
trapz
(
space
.
x
,
trapz
(
space
.
y
,
qwert
));
qwert_pdf
=
qwert
/
division
;
fxy
(:,
:,
sensor_idx
,
k_idx
,
step_idx
)
=
qwert_pdf
;
end
margi
=
squeeze
(
sum
(
fxy
(:,
:,
:,
qq
),
3
));
joint
=
squeeze
(
prod
(
fxy
(:,
:,
:,
qq
),
3
));
division
=
trapz
(
space
.
x
,
trapz
(
space
.
y
,
joint
));
joint_pdf
=
joint
/
division
;
max_prob
(
qq
)
=
max
(
joint
(:));
joint
=
squeeze
(
prod
(
fxy
(:,
:,
:,
k_idx
,
step_idx
),
3
));
max_prob
(
step_idx
,
k_idx
)
=
max
(
joint
(:));
duration
=
seconds
(
time
()
-
start_time
);
fprintf
(
"Step ID: %d k ID: %d is completed in %.2f [secs]\n"
,
step_idx
,
k_idx
,
duration
);
end
parfor
k_idx
=
nk
:
nk
start_time
=
time
();
margi
=
squeeze
(
sum
(
fxy
(:,
:,
:,
k_idx
,
step_idx
),
3
));
joint
=
squeeze
(
prod
(
fxy
(:,
:,
:,
k_idx
,
step_idx
),
3
));
% division = trapz(space.x, trapz(space.y, joint));
% joint_pdf = joint / division;
f
=
figure
(
'visible'
,
'off'
);
ax
(
1
)
=
subplot
(
221
);
ax
_1
=
subplot
(
221
);
surf
(
space
.
xx
,
space
.
yy
,
margi
);
hold
on
;
for
pp
=
1
:
nsensors
sensor_idx
=
sensors
(
pp
);
for
sensor_idx
=
1
:
experiment
.
nsensors
scatter
(
experiment
.
sensor_locations
(
1
,
sensor_idx
),
experiment
.
sensor_locations
(
2
,
sensor_idx
),
'rx'
);
end
% colorbar;
scatter
(
experiment
.
groundtruth
(
1
,
step_idx
),
experiment1
.
groundtruth
(
2
,
step_idx
),
'k.'
)
axis
equal
;
shading
interp
;
view
([
0
,
90
]);
drawnow
;
ax
(
2
)
=
subplot
(
222
);
ax
_2
=
subplot
(
222
);
surf
(
space
.
xx
,
space
.
yy
,
joint
);
hold
on
;
for
pp
=
1
:
nsensors
sensor_idx
=
sensors
(
pp
);
for
sensor_idx
=
1
:
experiment
.
nsensors
scatter3
(
experiment
.
sensor_locations
(
1
,
sensor_idx
),
experiment
.
sensor_locations
(
2
,
sensor_idx
),
100
,
'rx'
);
end
% colorbar;
scatter3
(
experiment
.
groundtruth
(
1
,
step_idx
),
experiment1
.
groundtruth
(
2
,
step_idx
),
100
,
'k.'
)
axis
equal
;
shading
interp
;
view
([
0
,
90
]);
drawnow
;
subplot
(
2
,
2
,
[
3
:
4
]);
plot
(
k_space
,
max_prob
);
grid
on
;
grid
minor
;
xlabel
(
'SNR $\kappa$'
);
ylabel
(
'Max Joint-Probability'
);
linkaxes
(
ax
,
'xy'
);
fname
=
sprintf
(
"../data/k_study/
step
_%d
/
result_%d.png"
,
step_idx
,
qq
);
exportgraphics
(
gcf
,
fname
,
'BackgroundColor'
,
'
non
e'
,
'Resolution'
,
600
);
plot
(
k_space
,
[
max_prob
(
step_idx
,
1
:
k_idx
),
zeros
(
1
,
nk
-
k_idx
)]
);
grid
on
;
grid
minor
;
xlabel
(
'SNR $\kappa$'
);
ylabel
(
'Max Joint-Probability'
);
% ylim([0 max(max_prob(step_idx, :))]);
linkaxes
(
[
ax
_1
,
ax_2
]
,
'xy'
);
fname
=
sprintf
(
"../data/k_study/
a
_%d
_
result_%d.png"
,
step_idx
,
k_idx
);
exportgraphics
(
gcf
,
fname
,
'BackgroundColor'
,
'
whit
e'
,
'Resolution'
,
600
);
close
(
f
);
%
duration
=
seconds
(
time
()
-
start_time
);
fprintf
(
"k ID: %d is completed in %.2f [secs]\n"
,
qq
,
duration
);
end
f
=
figure
(
'visible'
,
'off'
);
plot
(
k_space
,
max_prob
);
grid
on
;
grid
minor
;
xlabel
(
'SNR $\kappa$'
);
ylabel
(
'Max Joint-Probability'
);
"experiment"
fname
=
sprintf
(
'../data/k_study/step_%d/prob.png'
,
step_idx
);
exportgraphics
(
f
,
fname
,
'BackgroundColor'
,
'none'
,
'Resolution'
,
600
);
close
(
f
);
fname
=
sprintf
(
"../data/k_study/step_%d/results.mat"
,
step_idx
);
save
(
fname
,
"fxy"
,
"joint"
,
"joint_pdf"
,
"margi"
,
"space"
);
fname_out
=
sprintf
(
'../data/k_study/step_%d/anim.gif'
,
step_idx
);
fname
=
sprintf
(
"../data/k_study/step_%d/result_*.png"
,
step_idx
);
filepath
=
dir
(
fname
);
filepath
=
natsortfiles
(
filepath
);
for
k
=
1
:
numel
(
filepath
)
fname
=
fullfile
(
filepath
(
k
)
.
folder
,
filepath
(
k
)
.
name
);
img
=
imread
(
fname
);
[
A
,
map
]
=
rgb2ind
(
img
,
256
);
if
k
==
1
imwrite
(
A
,
map
,
fname_out
,
'gif'
,
'LoopCount'
,
Inf
,
'DelayTime'
,
1
);
else
imwrite
(
A
,
map
,
fname_out
,
'gif'
,
'WriteMode'
,
'append'
,
'DelayTime'
,
1
);
end
fprintf
(
"Step ID: %d k ID: %d is completed in %.2f [secs]\n"
,
step_idx
,
k_idx
,
duration
);
end
end
% save("../data/k_study/results.mat", "fxy", "space", "k_space", "beta");
This diff is collapsed.
Click to expand it.
Preview
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment